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In this paper we present a theoretical study of radiationless transitions in a small molecule em- 
bedded in a dense inert medium. Two extreme situations of the molecule-medium coupling were 
considered, involving the case of zero displacements of the medium modes between the two electronic 
states (i.e. the Shpolskii matrix) and the limit of strong molecule-medium coupling. The Fourier 
transform of the non radiative decay probability of a small molecule in a Shpolskii matrix involves 
exponential damping, while for the strong coupling situation Gaussian damping is involved. In the 
case of the Shpolskii matrix the decay rate of a small molecule can be expressed in terms of an infinite 
series where each term corresponds to a product of an (intramolecular) Poisson distribution and a 
(medium induced) Lorentzian distribution. The Lorentzian widths were explicitly expressed in terms 
of the vibrational relaxation widths. The Robinson-Frosch formula can be obtained for the extreme 
case of near degeneracy in a Shpolski i matrix. In the limit of strong molecule-medium coupling the 
decay rate of a small molecule can be recast in terms of an infinite sum where each term involves a 
superposition of a Poisson distribution and a Gaussian distribution. The medium induced Gaussian 
distribution is determined by intramolecular phonon broadening. We have elucidated some new 
features of the electronic relaxation of a small molecule in a dense medium pertaining to the problem 
of off-resonance intramolecular coupling which modifies the energy gap law and the deuterium iso- 
tope effect. 

Strahlungslose /Jberg~inge in einem kleinen Molekfil, das yon einem dichten inerten Medium 
umgeben ist, werden untersucht, wobei zwei Grenzf~ille bei der Kopplung Molekfil/Medium zu- 
grunde gelegt werden: keine Verschiebungen der Medium-Bewegungen beim 1Jbergang (d.h. der 
Sbpolskii-Matrix) einerseits und starke Kopplung Molekfil/Medium andererseits. Die Fouriertrans- 
formierte fi~r die Wahrscheinlichkeit des strahlungslosen Zerfalls eines kleinen Molekiils in Form 
einer Shpolskii-Matrix schlieBt exponentielle D~impfung ein, wohingegen bei starker Kopplung die 
D~impfung einer Gauss-Funktion entsprieht. Im ersteren Fall l~gt sich der Zerfall als unendliche 
Reihe von Produkten einer intramolekularen Poisson-Verteilung mit einer vom Medium induzierten 
Lorentz-Verteilung formulieren, wobei die Lorentz-Breite explizit mittels der Schwingungsrelaxations- 
breiten angegeben wird. Die Robin-Frosch-Formel ergibt sich fiir den Grenzfall der Fastentartung 
der Shpolskii-Matrix. Bei starker Molekfil-Medium-Kopplung lal3t sich der Zerfallsverlauf als unend- 
liche Summe von ~berlagerungen yon Poisson- und Gaussverteilungen angeben. Dabei wird die 
Medium-induzierte Gauss-Verteilung dutch die intramolekulare Phononen-Verbreiterung bestimmt. 
In diesem Zusammenhang zeigten sich einige neue Gesichtspunkte ffir die elektronische Relaxation 
kleiner Molektile in dichten Medien, wie z. B. das Problem von Nicht-Resonanz bei intramolekularer 
Kopplung, wo der Satz vom Energie-Sprung und der Deuterium-Isotopie-Effekt modifiziert werden 
mtissen. 

1. I n t r o d u c t i o n  

In  c o n s i d e r i n g  t he  i m p l i c a t i o n s  o f  i n t r a m o l e c u l a r  i n t e r s t a t e  c o u p l i n g  o n  t he  

r a d i a t i v e  d e c a y  of  e l e c t r o n i c a l l y  exc i t ed  s t a t e s  of  p o l y a t o m i c  m o l e c u l e s ,  i t  is 

i m p o r t a n t  to  r ea l i ze  t h a t  t h e  e x i s t e n c e  o f  i n t e r s t a t e  c o u p l i n g  p r o v i d e s  a n e c e s s a r y  

b u t  b y  n o  m e a n s  a suf f ic ien t  c o n d i t i o n  for  t he  o c c u r r e n c e  of  a n  i n t r a m o l e c u l a r  

e l e c t r o n i c  r e l a x a t i o n  p roces s .  I n t r a m o l e c u l a r  n o n - r a d i a t i v e  d e c a y  is e x h i b i t e d  in  
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the statistical limit for excited state of "isolated" large molecular which are cha- 
racterized by a large energy gap (,,- 1 eV) [1]. In the case of small molecules in the 
low pressure gas phase no intramolecular relaxation occurs, while the effects of 
intramolecular coupling are exhibited as follows: a) A complex molecular absorp- 
tion spectrum of some triatomic molecules [2] (i.e. NO2) is observed, which 
may be sensitive to external fields (222-21/mixing in the CN molecule [3]). 
b) Anomalously long radiative decay times of the first spin allowed excited states 
of some triatomic molecules (i.e. NOz, SO2 and CS2) [4] are observed, while the 
emission quantum yields are unity. 

One can extend the concept of the decay of electronically excited states of a 
"small molecule" to include the following two categories: 

1. Electronically excited states of diatomic and triatomic molecules (i.e. NO2, 
SO2 and CS2), which are characterized by a small number of vibrational degrees 
of freedom. 

2. Electronically excited states of some large molecules which are characterized 
by a small electronic energy gap. Such excited states will exhibit the small molecule 
case encountered within a large molecule [5]. Experimental verification of this 
theoretical prediction was recently obtained for the radiative decay of the second 
excited singlet state of 3,4 Benzopyrene [6] and of naphthalene [7] (where the 
Sz-S~ energy gap is ~3000cm -~) and of the lowest excited singlet state of 
Benzophenone [8, 9] (where the S 1 - T 1  energy gap is 2800cm -1) in the low 
pressure gas phase, which exhibit anomalously long radiative decay times (rela- 
tive to the expectations on the basis of the integrated oscillator strength). 

Most of previous theoretical work on electronic relaxation in large molecules 
focused attention on the "isolated" molecule in the statistical limit [1]. Little 
theoretical attention has been devoted to medium effects on electronic relaxa- 
tion of a guest molecule. Consider the simplest model for an "inert" medium 
which is characterized by the following features: 

1. It does not modify the relevant energy levels, 
2. It does not affect the interstate coupling matrix elements. 
3. It does not provide promoting modes for electronic relaxation. 

Thus the electronic wave functions of the guest molecule are practically invariant 
with respect to charges in the medium nuclear coordinates. 

Such an "inert" medium may affect the electronic relaxation of a guest mole- 
cule as follows: a) It may provide accepting modes for the intramolecular decay 
process. The equilibrium configurations of the medium phonon modes (and 
their frequencies) usually vary between different electronic states of the impurity 
molecule. Indirect information concerning this effect may be obtained from the 
phonon broadening of optical lines of impurity molecules in inert matrices [10]. 
It is well known that the low lying excited electronic states (where the contribu- 
tion of intramolecular decay to the linewidth is small) in mixed crystals and in 
hydrocarbon matrices exhibit appreciable phonon broadening, and only in 
special cases [11-] (which are referred to as Shpolskii matrices) the equilibrium 
configurations of the medium phonons do not vary between the ground and the 
electronically excited states. We may conclude that in many cases of physical 
interest low frequency medium vibrations may act as accepting modes in the 
electronic relaxation process, b) The medium provides a heat bath for vibrational 
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relaxation of the intramolecular vibrations. This vibrational relaxation (and vibra- 
tional excitation) processes may occur both in the initial and in the final electronic 
manifold. 

In the statistical limit the non-radiative decay probability (in the weak elec- 
tronic vibrational coupling limit) is dominated by the high frequency vibrational 
modes [12], whereupon the contribution of the low frequency medium accepting 
modes is negligible. Furthermore, it is asserted that in the statistical limit the 
vibrational relaxation in the final dense electronic manifold does not affect the 
non-radiative transition [13]. Thus the non-radiative decay of an individual vib- 
ronic level in the statistical limit is unaffected by an inert medium. From the 
experimental point of view provided that the vibrational relaxation process (in 
the initial electronic manifold) is fast on the time scale of the electronic transition, 
the non-radiative decay probability in an inert medium is obtained in terms of a 
thermal average over the decay of the individual vibronic levels of the isolated 
molecule. 

The situation is drastically different in the small molecule case. As is well 
established both experimentally and theoretically an isolated small molecule 
does not exhibit intramolecular electronic relaxation [4], while external pertur- 
bations (in the gas phase or by a dense host matrix) may induce a non-radiative 
decay process [-14-22]. The relevant experimental evidence may be summarized 
as follows: a) From the study of the emission spectra of NO in rare gas solid 
matrices experimental evidence was obtained for the a4II-x2II  intersystem 
crossing [14]. The lifetime of the quartet state in Ne, Ar and Kr was found to be 
156, 93 and 35 msec respectively, and this shortenting of the lifetime can be assig- 
ned to externally induced spin orbit coupling which enhances the non-radiative 
decay. It should be noted however that this interpretation is not conclusive as 
the enhanced spin orbit coupling can also reduce the pure radiative decay time 
of the a4I-I state, and quantum yield experiments are required to resolve this 
point, b )A  strong temperature dependence of the phosphorescence (T1--,So) 
intensity of SO 2 in inert rare gas and molecular matrices intitially excited to the 
S~ state was reported [ 15], while the T~ ~ So radiative decay times were tempera- 
ture independent. These results were interpreted in terms of the temperature and 
medium effects on the rate of the T 1 -* So intersystem crossing, c) The Sa state of 
the benzophenone molecule, which is separated by a small (~ 2800cm -1) gap 
from the T~ state, exhibits ultrafast S 1 - T 1 intersystem crossing in solution [16] 
(fluorescence quantum yield ~ 10 -6, non-radiative decay rate from the vibra- 
tionless S~ level ~ 5psec). On the other hand efficient fluorescence from the S 1 
state is observed from the isolated benzophenone molecule [8], which exhibits 
predominantly the features of strong interstate S 1 - T~ coupling as is the case 
for small molecules. 

The theoretical treatment of the non-radiative decay of a small molecule 
embedded in a medium pertains to the following theoretical problems: a) The 
conventional golden rule rate formula, or related expressions, which are ade- 
quate for the treatment of the statistical limit, are not of general applicability 
for the electronic relaxation of a small molecule embedded in a medium. This 
point was not always realized and some authors [17, 18] have used second order 
perturbation theory to handle non-radiative processes in small molecules with- 
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Fig. 1. Scheme for consecutive decay. [s) - initial molecular  state; Ir) - radiative cont inuum;  II) - 
sparse intramolecular  manifold; Im) - medium states 

out proper modifications. It should be pointed out that the pioneering work of 
Robinson and Frosch handled the vibrational relaxation in the final manifold. 
The Robinson-Frisch formula [19] for the non-radiative decay probability 
W = (2n/he)~ t2 (where ft, are the intramolecular coupling matrix elements, 

n 

while e is the vibrational relaxation width in the final manifold) is valid only 
for special cases and is inadequate for the small molecule case. Recently Taka- 
hashi and Yokota [20] attempted to consider the decay of small molecules by 
an ad-hoc inclusion of a vibrational relaxation rate into the Kubo-Toyozawa 
generating functions formalism, and provided a distinction between the small 
molecule and the large molecule case in terms of the corresponding vibrational 
relaxation width, b) When the medium does not supply accepting modes, the 
non-radiative decay rate of a small molecule may be considered in terms of a 
consecutive decay precess. Here the initial molecular state is intramolecularly 
coupled to final molecular states which in turn decay by vibrational relaxation 
which originates from intermolecular coupling to the medium states, c) The con- 
secutive decay process for a small molecule can be described phenomenologi- 
cally (see Fig. 1) by assigning a vibrational relaxation width to the final molecular 
states. A more elaborate model should involve the details of the vibrational 
relaxation process [21]. 

In this paper we explore the problem of electronic relaxation of small mole- 
cules in a dense medium. In the first stage of this treatment we consider the idealized 
situation of a Shpolskii medium [10] whereupon the medium vibrations do not 
provide accepting modes. In this context we shall attempt to resolve the following 
problems: a) To establish the criteria for the validity of an exponential decay 
law (described in terms of the golden rule rate constant) for a small molecule 
subjected to a consecutive decay process, b) To elucidate the effects of vibrational 
relaxation on electronic relaxation of small molecules. We shall demonstrate 
that in general the decay rate of a small molecule will exhibit a linear depend- 
ence on the (medium induced) vibrational relaxation width, c) To clarify the 
connection between the consecutive decay scheme and the Robinson and 
Frosch expression [19]. Only in the rare and special case of accidental degeneracy 
between the initial and the final molecular vibronic states, a reciprocal relation 
is expected to exist between the decay rate and the vibrational relaxation width. 
d) To study the contribution of the vibrational relaxation width to the non- 
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radiative decay rate of a small molecule in terms of a harmonic model which 
considers vibrational relaxation as a ladder process. 

In the second stage of the present treatment we shall relax the restinction of 
a Spolskii medium and consider the role of medium modes as accepting modes 
for the electronic relaxation of a small molecule. This physical situation will 
bring back the features of the statistical limit whereupon the electronic relaxa- 
tion rate will be independent of the vibrational relaxation rate for intramolecu- 
lar and intermolecular vibrations. 

2. Model System 

We consider non-radiative relaxation of a molecule embedded in an inert 
dense host matrix. We do not need to concern ourselves with the relatively com- 
plex description of relaxation by collisions but rather consider coupling of the 
guest molecule to the medium phonons. The Hamiltonian of the system may be 
conveniently factorized into the molecular Hamiltonian (which in itself consists 
of the Bona Oppenheimer Hamiltonian, HBo, and a term Hv responsible for the 
non-adiabatic coupling), the medium Hamiltonian HMed, an interaction term, 

M H~nt, between the medium and the molecule 

H = HBo + H v + HMe d + Hi~ , (2.1) 

Our molecular model will be similar to that presented in previous work. We 
shall also apply the same notations (see Ref. [21], Section 2). 

Utilizing some approximate symmetry arguments it may be demonstrated 
that within our model: a) Interference effect resulting from the coupling of different 
levels to the same medium levels, are negligible, b) Intramolecular interference 
effects will be neglected, c) We consider the fast vibrational relaxation limit, 
whereupon electronic relaxation is slow on the time scale of vibrational relaxation. 

These basic assumptions will be utilized to handle the phenomenology of the 
non-radiative decay of a (large or small) molecule in an inert medium which 
does not provide accepting modes (Section 3). These results are then applied in 
Section 4 for the non-radiative decay of a small molecule in a Shpolskii matrix. 
In Section 5 we consider the details of the vibrational relaxation (induced by the 
Hi~t term) and its effect on the electronic relaxation of a small molecule in a 
Shpolskii medium. Finally we consider (Section 6) a medium which provides 
accepting modes, whereupon the electronic relaxation of a small molecule is 
now reminescent of the statistical limit. 

3. Theory of Consecutive Decay 

In this section we shall briefly consider the problem of the time evolution of 
an "initially prepared" state [si) subjected to a coupling scheme represented by 
Fig. 1, which has been previously handled by Freed and Jortner [22] who utili- 
zed the Green's function technique, and more recently by Nitzan et al. [5], using 
the Wigner-Weisskopf method. The Green's function method is based on the 
observation that the time evolution of an initially prepared state [si) is given 
by the Fourier transform of the diagonal element (si[Gl si) of the Green's operator 
for the system, G = ( E - H +  iq) -I,  ~/---*0 +, and that the decay characteristics 
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of this state are determined by the complex poles of this diagonal matrix element, 
whose explicit form in our model is (see Appendix A) 

( s i l G I s i )  = E -  E~i + -2-- Fsi(E) + - f  Asi(E) (3.1) 

where F~i(E) is a smooth function of the energy E which is nearly a constant in 
the vicinity of E ~ E~ and whose magnitude for E = E~i corresponds to the radia- 
tive width of the state [si); and where As~(E ) is given by 

1 12 
As,(E) = 2 (E~r'jl(Hv)"'J- E0 2 + ~F,jl 2 (3.2) 

F~j is the width of the state IIj) due to its coupling with the medium states (strictly 
speaking this is a smooth and nearly constant function of E, near E = Ezj). E~ and 
Etj a r e  the modified (by the appropriate level shifts) energies of the states [si) 
and I/./) respectively. 

The crucial point is now the form of A~i(E) as a function of E. Freed and 
Jortner [22] have demonstrated that the statistical limit corresponds to the 
case in which this function is a smooth and nearly constant function of E. In 
this case it may be shown that the function G~,~, Eq. (3.1) has only a single pole 
E = Es - �89 + A~i ). In this case the decay will be smoothly exponential in time, 
and A~ is the non-radiative contribution to the decay rate. 

A more interesting behaviour results in the situation where Asi(E) is not a 
smooth function of E, which corresponds to the case where the density of states 
in the manifold {I/J)} is low. This case is much more difficult to mathematical 
treatment (a general exact solution has been obtained [53 only for the case where 
the manifold {I/J)} consists of one state only). However it will be sufficient to 
consider the time evolution of the system in two important limits, a) The strong 
intramolecular coupling limit characterized by 

(Hv)si, ljl >> IElj -- Elj, I (3.3a) 

where Ilj) and Ilj') are two adjacent levels in the {l/i)} manifold, b) The weak 
intramolecular coupling limit which is defined by the inequality for all j, 

i 
I(H~)~,,lj[ ,~ Es~ - Elj + ~ (F~, - Fti) . (3.3b) 

A small molecule embedded in a dense medium where fast vibrational relaxa- 
tion occurs can be often described by the weak coupling limit. If the density of 
states in the {l(J)} manifold is low (for example in a diatomic or in a triatomic 
molecule), the term IE~-  EtjL is sufficiently large to satisfy condition (3.3b) (ex- 
cluding cases of accidental degeneracy). Even if this is not the case, the other 
term IF~i- F01 in which F 0 ~ 1 - 10cm-1 >> F~ will in most cases be much greater 
than [(Hv)~,ul. We may thus conclude that the relaxation of a molecule in a medium 
will correspond in most cases to the weak coupling situation. 1 

In the case of a strong coupling situation a prediagonalization of the strongly coupled levels 
should be performed. A discussion of this situation is provided in Refs. [5, 9]. 
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The time evolution of a prepared Jsi) state in our model has been evaluated 
by Nitzan et  al. [5], and is given by 

I(Hv),i,ljl 2 e x p ( -  7zJt) 
[(~v(t) Isi)r 2 = e x p ( -  7st) + _ ~i  (Esi - Ezj) 2 + �88 - Qj)2 + interference terms (3.4) 

where ~v(t) is the state vector of the system at time t given that ~p(0) = ] s i ) .  7 ~ 
is given by 

I(H~)~i,lj[ z (Q;  - Qi)  + x" (3.5a) 
(E~i - Eli) 2 + �88 Q3 2 

(see also Eq. (A.11)), while y 1i takes the form 

�9 I (H~), , .  ~jl 2 (F t j  - F~,) (3.5 b) 
r = r~;- (E~-  E~) ~ + � 8 8  r~,) 2 

The interference terms in Eq. (3.4) decay as exp(-�89 Now in the weak coup- 
ling limit, we have 

7 l; -~ F;; >> 7 ~ (3.6) 

which is also consistent with the restriction that vibrational relaxation is faster 
than the electronic transitions. In this case the time evolution of our system will 
be essentially characterized by the exponentially decaying term exp(-7sit), as 
the other terms in Eq. (3.3) are characterized by much smaller amplitudes and 
also decay much more rapidly. 

We conclude that our model molecule subjected to weak coupling conditions 
and to the restriction that relaxation due to the coupling with the medium is 
much faster than the radiative decay, i.e. F~j ~> Fsi for all j, if prepared initially in 
the state Is i)  will decay exponentially with a decay rate given by Eq. (3.5a). The 
non-radiative decay rate is thus 

• I(Hv)s~'~il2ru (3.7) % V 
I s,- + 

where Fst has been neglected relative to Fzj. The result (3.7) is a slight generaliza- 
tion of Fermi's golden rulel The latter is obtained in the limit Fz~- 0 and when 
{I/j)} is a continuous manifold of states. An alternative derivation of (3.7) using 
sum rules for non-radiative decay is given in Appendix B. 

Returning to Eq. (3.7), it is easy to show that with the simplifying assumption 
that Fu is a constant over the manifold {1/./)} 

F t j = F t  for a l l j .  (3.8) 

Eq. (3.7) may be expressed as a Fourier transform of a generating function. To 
achieve this goal we note that a Lorentzian may be expressed as a Fourier trans- 
form in the following way 

F 1 dt exp 
(E~ - Etj)  2 + (C/2) 2 = h- _ ~ T (Ezj - gsi) - Itl 
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where the variable t has dimensions of time. Thus Eq. (3.7) may be recast in the 
form 

it 1 ~ dtexp(- ~--~ltl)~l(Hv)~i,,jl2expI~(Etj-Esi) ] W~i= V- _00 

= _~ dt exp - t -  Itl exp (3.9) 

where A E = Eso - Ezo (3.10) 

corresponds to the energy gap between the pure electronic origins of the two 
electronic manifolds, and where E} and E~ are vibrational energies above the 
corresponding electronic origins. 

Averaging now over the initial distribution, we obtain 

1 ~176 ( iAEt F 
(W~)T= ~-_00 dtexp h 2h 

(3.11) 
2 [  it (E , -  E~)] @ 2 Pi 2 [(Hv)si,ljl exp ~ -  

i j 
where 

p, = Z -  1 exp( -  flU s) (3.12) 

Z =  ~ exp( -  flE~); fl=(knT) -1 
i 

We note that Eqs. (3.9) and (3.11) yield rigorous expressions for the non-radia- 
tive decay rate also for the statistical limit case. It also applies for the isolated 
molecule case, where now F will correspond to the infrared and or radiative 
width of the levels Ilj). The results previously obtained [12, 23-24] which have 

not included the factor exp ( -  2-~- [tl) in the generating function where concep- 

tually deficient as, bearing in mind that we actually handle a quasicontinuum 
and not a real continuum, the result with F = 0 will diverge at any point where 
exact conservation of energy occurs, as is easy to see from Eq. (3.7). However, 
as we shall demonstrate elsewhere, the non-radiative transition probability in 
the statistical limit does not depend on F and reduces to the previously obtained 
results of Lin and Bersohn [24], Engleman, Freed and Jortner [12] and Fisher 
[23]. 

The sum over i in Eq. (3.9), and over i andj  in Eq. (3.11) may now be evaluated 
using the Green's function (or density matrix) expression for the harmonic oscil- 
lator, or alternatively the Feynman's operator calculus together with a simple 
closure relation. 
The result may be written generally in the form 

Wsl- h2 dtexp - i -~-  t -  It[ F(t) , 
- - o 0  

(3.13a) 

100 ( At r ) (W~)T=-~-_~ dtexp - i ~  t -  ~ l t l  (F(t))r (3.13b) 
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where expressions for F(t) and F(t) have been previously obtained [12b, 25] for 
a molecule characterized by identical displaced potential surfaces: 

�9 {[(v~+ 1)exp(ico~t)+v~exp(-ico~t)]}exp[~, u (A2/2)exp(icout)] (3.14a) 

~- [ 1 -  cos(cout)y 

U~z  r = O  

1 2 (2<vu> T+ 1)} (3.14b) <F(t)>r = �88 ~ ]C~]] 2 exp - ~ ~ A u 
• # 

oo 

| _(dt  {{[coth(flhco~/2)+ 1]exp(ico~t)+ [coth(flhco~)- 1] exp(-ico~t)} 

| expl �89 ~ A 2 (<vu> + 1)exp (icout)+ �89 ~ A# 2 (vu> exp(-icout)l } 

and for a molecule characterized by displaced potential surfaces which differ 
also in the frequencies of the normal modes [12b, 26]. The result for this case in 
the zero temperature limit is 

(F(t))o = �89 2 [Cs~l] 2 IF] (flu)- 1/2 exp [icot~t - i6ut ] 
K U 

] (1 - fl~)z [1 - exp(icozJ)]1-1 
| -[1 + 4fl~ l 

(3.15) 

(1 - flu) 2 [1 - exp(2icolut)] }- 1/2 

/ fi, A 2 [1-exp(icozut)] l .  | 
exp -[- ~ 1 + flu + (flu- 1)exp(icozut) J 

An approximate result for Wsi for any i is given in Ref. [26]. In these expressions 
vsu is the initial population in the mode/~ while (v,> r = [exp(flhcoj-  1], C~I is 
the electronic matrix element [123, col u and co~, are the frequencies of the mode 
# in the/-th and s-th electronic states respectively. Finally, 6 u and flu are defined 
by 

~u = �89 col.) 

f l #  = (COs#/(DI#) . 

It is important to note that expressions (3.14) and (3.15) are valid for both large 
and small molecules interacting with an inert medium and subjected to the con- 
ditions (3.8) and (3.3b) (the last condition is not important for the large molecule 
case). We now turn to study the particular characteristics of the small molecule 
c a s e .  
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4. The Small Molecule Case 

It has been asserted in Section 3 that within the restrictions imposed by the 
weak coupling limit, a small molecule embedded in a medium, if initially pre- 
pared in some excited electronic-vibrational state will exhibit an exponential 
non-radiative decay (basides its radiative decay). The non-radiative decay rate 
is given by Eq. (3.13b). 

In order to handle Eq. (3.13b) analytically we shall consider the simple mole- 
cular model system characterized by identical frequencies in the two electronic 
states which just differ in their origins. The non-radiative decay probability in 
the zero temperature limit is (taking for the sake of simplicity the contribution 
of only one promoting mode) 

1 
( W ) T =  -~-IC~ll2 exp (-- ~ a.) J (4.1) 

where the vibrational integral has the form 

l- 
" (4.2) 

1 
dxexp - iex + ~ a. exp(iN.x)-  ~ TIxl 

C O N  - c~ 

here we have set a. = �89 ~ A~. The intramolecular frequencies have been norma- 

lized by a common divider con so that oS. = cO" are integers and where ~ = F/coN 
con 

while ~ = E - hco~/co N. 
In the small molecule case the exponential damping factor in the integral 

(4.2) cannot be neglected and thus the saddle point method which was popular 
in the statistical limit is now inapplicable. To proceed we now expand the expo- 
nent in (4.2) in the form 

N 

( .  J . = 1  

- -  n l = O n 2  = 0  n N = O . = l  ( ~ )  [ 

= Z e x p  i Z nuNu x l-I (a.)". 
(.~ t \ .  = ~ . = 1 (n.) ! 

where N is the number of vibrational degrees of freedom and ~ is a sum over 
{n} 

all the sets of any N integers (including zero). We thus obtain 

J =  ~ 1-I ~ dxexp i~x+i Z n u • x -  ~-Ixl �9 (4.4) 
('ON {n} . = 1 iv/it �9 - zo # = 1 
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The integral in Eq. (4.4) is easily performed to give a Lorentzian of width 7, so 
that J takes the form of a superposition of Lorentzians 

1 ~ 7 I~I (a~)"~ (4.5a) 

This expression can be easily transformed to an alternative form which contains 
the conventional energy parameters. Multiplying the numerator and the deno- 
minator by h2co~ Eq. (4.5a) then takes the form 

r' (a.)"- 
J = h Z u 2 1~ (4.5b) "'(~E-hco.-h ~==l n.co.) + ( r / 2 ) 2 .  n~, 

Eqs. (4.1) and (4.5b) provide an explicit expression for the non-radiative 
transition probability (Eq. (3.7)), where the widths F u are assumed to be inde- 
pendent of the particular vibronic levels I/j), and where the coupling matrix 
elements have been evaluated for the simple model at hand. These expressions 
are still general being applicable for both the small molecule case and for the 
statistical limit. The statistical limit is characterized by the relation F ~  ~-1 
(where 0 is the density of states in the Ill) manifold). In this case the overlapping 
Lorentzian peaks in (4.5b) yield a smooth function of the energy so that J (and 
(W))  is a smooth function of the energy, being independent of F [-13]. 

Turning now the small molecule case we specialize in the simple situation 
where only a single intramolecular vibrational mode acts as an accepting mode. 
This physical situation prevails for spin orbit coupling in a diatomic molecule 
(i.e. 4 / i _  2/1 coupling in NO). Eq. (4.5b) takes the form 

J = h ~ (AE - nhco) 2 + (r/2) 2 ~ " (4.6) 

Provided that the widths of the final states originate from vibrational relaxa- 
tion then for the low temperature limit the vibrationless level n = 0 does not 
contribute to the final result and the sum in (4.6) has to be taken over n = 1..- oo. 

The following comments are now in order: a) The decay rate of a small mole- 
cule in a dense medium is expressed in terms of an infinite series where each term 
corresponds to a product of a Lorentzian distribution and of a Poisson (Pekerian) 
distribution, b) In the simple case considered herein the density of vibronic states 
in the final electronic manifold is constant, whereupon only the magnitudes of 
the Lorentzian and of the Pekerian will determine the relative contributions of 
the various terms in Eq. (4.6). For a < 1 it may happen that the largest contri- 
bution to the decay rate of the Is0) level will not originate from the close lying 
[lj) levels, but rather from low lying I/j) states which contribute via the tails of 
their Lorentzian (uncertainty) distributions, c) In the case of accidental degene- 
racy when ( A E -  he))~ F, and provided that a is not too small 2, the dominating 

2 Reasonable order of magni tude estimates are A E = 1 0 4 c m  -1, h~o=103cm -1, a ~ l  and 
F ~ 1 cm-1.  This value of F corresponds to fast vibrational relaxation. 
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contribution to J originates from a single level, whereupon one gets 

4h [a(ae/~o,)/(AE/ho9)! ] (4.7a) J=-f- 
and 

2 
W~o = ~ -  Ic~ll 2 e-" [aaF/~'/(A E/ha)) !]. (4.7b) 

Eq. (4.7) corresponds to the Robinson-Frosch formula, obtained for our simpli- 
fied model system. The main feature of this result is the dependence of Wso on 
the reciprocal of the width F. It is also easy to verify that the result (4.7) is model 
independent, for the case of accidental degeneracy one gets 

J = 4h I(Hv)~i ,ljl2/I~lj. (4.8) 

Thus the Robinson-Frosch formula is applicable only for the case of near degen- 
eracy in a small molecule embedded in a Shpolskii matrix. This theoretical 
result is of little use in real life. d) When accidental degeneracy is not encountered 
i.e. d E - n h c o > > F ,  we have 

1 a n 
J = h F  LX--, ( A E - n h c g )  2 n! (4.9) 

so that the non-radiative probability is linear with the coupling to the medium, 
expressed in terms of the width F. This physical situation may be encountered 
in real life for small molecules in a Shpolskii matrix, e) The energy gap law for 
the non-radiative decay of a small molecule in a dense medium is not expected 
to be of general validity, as in the case for large molecules. If the major contri- 
bution to J (and to W) originates from off resonance low lying levels, W will 
vary as (A E)-2. On the other hand only when the major contribution will origi- 
nate from near resonance coupling the usual energy law W ~ a~/~~ 
will apply. 

5. Details of  Vibrational Relaxation 

Up to this point we have been concerned with a phenomenological description 
of the vibrational relaxation widths of the final molecular states involved in the 
electronic relaxation process. The details of the vibrational relaxation process 
and its effect on the electronic relaxation of a small molecule can be handled 
by considering a simplified model of a harmonic molecule interacting with a 
harmonic medium via interaction terms which are linear in the molecular nuc- 
lear coordinates and of arbitrary order (within the rotating wave approximation) 
in the medium phonons [21, 27]. The limit of fast vibrational relaxation which 
is of interest for us can be defined in terms of the relation [21] 

for all/~ = 1 --. N. 
Where t is the time scale and the indices # refer to the vibrational mode. The 

thermally averaged non-radiative transition probability for spin allowed internal 
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conversion in the fast vibrational relaxation limit is [21] 

2 e x p [ - 1  A~(2(vu)r+l)] (w,)T = V - ~  rcs~'r2 5 - 2  

|  ~ dtexpl-i(h E o9,)t+ 2{A21 
_ |  . \ 2 /  

1 ~, A]@u)r exp - it%t- ~ It[ �9 (@,)r  + 1) exp iogut- Itl + 5 - ,  

+ [ c o t ' h ( ~ - ) - 1 ]  | S dtexp[-i(~-+oo,)t+ 2 (A21 (5.1, 
_~ , , \ 2 J  

"((vu)r+l)exp(ic%t- -~-h 'tO + 5-2 

Where C~z is the intramolecular electronic coupling matrix element induced by 
the ,x promoting mode. co, is the frequency of the #-th vibrational mode charac- 
terized by the displacement A, and by the thermal occupation number (vu) r. 
The effective electronic energy gap A E~ = A E- hoo~ is reduced by the promoting 
mode frequency. Eq. (5.1) bears a close resemblance to the thermally averaged 
non-radiative transition probability in the statistical limit except that each fre- 
quency is now replaced by the complex frequency cou + iTu. 

To simplify matters we consider the electronic relaxation probability of the 
vibrationless level (corresponding to the zero temperature limit of Eq. (5.1)) 
which is given by 

1 1 A2) ~ dx{exp 

| ~uA~exp(ic%x-Tu]X])l}. 

iAE~x ] 
h - ~ Ix[ 

(5.2) 

Utilizing the expansion of the exponential function 

exp A u 2 exp (ic%x - ~, jxl) 1 

[1 A2]n~, 

= {,I2exp[i(~unu~ ~unuTu'X'lO '2~"'nu' 

Eq. (5.2) takes the form 

Wso = ~ ~ ICs]l 2 exp - 5- 

(5.3) 

(5.4) 
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We have thus obtained a generalized microscopic expression for the non-radiative 
decay probability in the fast vibrational relaxation limit. The width of the lj 
level characterized by the vibrational occupation numbers j - {M} (for the har- 
monic model) is given by 

Czj = 7~ + ~ n.7~ (5.5) 
/z:r 

The linear dependence of the thermal relaxation widths of the multimode 
harmonic oscillator on the population number is well known [-28]. It should be 
noted that Eq. (5.4) is equivalent to the phenomelogical equation (3.2) except 
that now an explicit expression has been obtained (Eq. (5.5)) for the level widths. 
Thus in the small molecule case when a small number of vibrational modes contri- 
butes to (5.4) the conclusions derived in section 4 are of general applicability. 

6. The Contribution of Medium Modes 

Up to this point we have disregarded the displacement of the origins of the 
medium modes, assuming that the inert medium does not contribute accepting 
modes for electronic relaxation. In order to extend the relaxation theory of a 
small molecule in a medium we shall consider the small number of intramole- 
cular vibrations and the intermolecular vibrations on the same footing. Our 
model system consists of a supermolecule with a single intramolecular vibratio- 
nal mode (specified by the frequency ~ and the reduced displacement A) and N 
intermolecular modes (characterized by frequencies ~ and reduced displace- 
ments As; ~ = 1 ... N). The physical situation now corresponds to the statistical 
limit, whereupon the non-radiative decay probability is independent of the 
vibrational relaxation widths 7u. Separating the intramolecular and the inter- 
molecular contributions the transition probability (Eq. (3.13)) takes the form 

W~0 - 2h 2 ~ [C~tl 2 exp - ~- 2 
X 

| ~ dxexp - - ~ - x ) |  A2exp(io.)x (6.1) 
- a o  \ 

| 

The non-radiative decay probability can be expressed in terms of separate 
contributions of the intramolecular high frequency mode and intermolecule low 
frequency modes. Utilizing the expansion (4.3) we now have 

1 ( 1 A21 (A2/2f 
W~~ 2h 2 ~ IC~It2 ~ e x p , ~  \ - - 2 -  ] n! F(AE~- rico) (6.2) 

where 

F(AE~-ncn)=expl- i ~, i A 2 ~ A2]}~odxexP[h( E~-nm)x] 
(6.3) 
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F(e) = 

where 

Thus the non-radiative transition probability can be recast as a sum of products 
of the intramolecular Franck Condon factors and the medium contributions (5.3). 
The F functions (5.3)just correspond to the line shape functions at the energies 
(AE,,-nco), which were previously treated in detail [29]. Thus the effect of the 
accepting medium modes, amounts to the replacement of the Lorentzian distri- 
butions Eq. (5.4) by the equivalent medium line shape functions. 

As is well known from the theory of radiative and non-radiative processes 
in molecules and solids Eq. (6.3) can be considerably simplified in the limit of 
strong coupling to the medium phonons whereupon 

(A~/2) > 1. (6.4) 

In this case the exponential function in the integral can be expanded in a power 
series of X retaining terms up to X 3 [12]. This procedure leads to the well known 
Gaussian line shape 

J dxexp( igx /h)exp( -DZX2)= ~ - ]  exp[ - (g-EM)e /D 2] (6.5) 
- c a 3  

ho)~ A~ (6.6a) 

is the second moment of the distribution, while the Stokes shift is 

E~ = 1 ~ hc%A 2" (6.6b) 

Utilizing Eqs. (6.2), (6.3) and (6.5) the transition probability in the strong mole- 
cule-medium coupling limit takes the form 

WsO = [C~l[ 2 ~ exp( -  A2/2) (A2/2)n 
. n! (6.7) 

| exp [ -  (A E - nhco - EM)2/D2]. 

Thus the non-radiative decay of a small molecule strongly coupled to the medium 
can be recast in terms of a superposition of a Poisson and a Gaussian distribu- 
tion.It is important to notice that as in the case of the Shpolskii matrix the non- 
radiative decay probability (6.7) may be dominated by off resonance coupling to 
the tails of the distributions of low lying states in the final manifold. 

To conclude this discussion we would like to point out that a phenomeno- 
logical model can be provided which accounts simultaneously for the medium 
broadening D (Eq. (6.6a)) and for vibrational relaxation broadening 7, (Eq. (4.1)). 
Provided that medium accepting modes are not active in intramolecular and 
intermolecular vibrational relaxation the non-radiative decay probability is 
given by Eq. (6.2)which includes both the intramolecular mode and the inter- 
molecular mode. It is easy to demonstrate that when the 7, terms are retained 
Eq. (6.3)will include additional contribution of the form exp ( - ~  7~]x[)in 

the integral. In the case of strong molecule medium coupling the Gaussian distri- 
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bution (6.5) is replaced by a Voigt line shape function [30]. Now in this limit the 
phonon broadening will appreciably exceed the vibrational relaxation broaden- 
ing, i,e. D >> 7~ for all/z, the Gaussian distribution (6.5) will be regained. 

7. Discussion 

In this paper we have considered the features of the electronic relaxation of 
a small molecule in a dense medium. We have focused attention on two limiting 
cases and considered the limit of zero displacements of the medium modes be- 
tween the two electronic states (i.e, a Shpolskii matrix) and the case of strong 
molecule-medium coupling. In both cases we were able to recost the non-radiative 
decay probability in terms of a sum, where each term is a product of an intra- 
molecular Franck Condon factor and a medium assisted distribution function. 
In the case of the Shpolskii matrix the latter term involves a Lorentzian distri- 
bution while in the limit of strong molecule medium coupling this term involves 
a Gaussian distribution. From the mathematical point of view we can assert 
that the Fourier transform of the non-radiative decay probability of a small 
molecule in a Shpolskii matrix involves exponential damping while in the strong 
molecule medium coupling Gaussian damping is involved. 

The main new features of the decay of a small molecule can be summarized 
as follows: 

a) Interaction of the small molecule with a medium via vibrational relaxation 
or phonon broadening is a prerequisite for the occurrence of non-radiative 
relaxation. 

b) The non-radiative relaxation probability of the small molecule in a medium 
is dominated by the coupling to the medium, being determined by the vibrational 
relaxation width y, in the Shpotskii matrix or by the distribution width, D, in the 
strong coupling case. 

c) The electronic relaxation of a small molecule may involve non-resonant 
coupling originating from overlapping widths of low lying final state. 

d) The popular energy gap law will not hold when off resonance coupling 
dominates. 

e) In the case of dominating of resonance coupling the deuterium isotope 
effect in the electronic relaxation will be negligibly small. 

These features drastically differ from the decay characteristics in the statisti- 
cal limit occurs via near resonance coupling, which are independent of the medium 
induced widths (~, or D), which exhibit the energy gap law and the large deuterium 
isotope effect. 

Appendix A. 
Sequential Decay by the Green's Function Method 

To verify Eqs. (3.1) and (3.2) we start from a model (see Fig. 1) where a single 
molecular vibronic level Ls) is coupled to a radioactive continuum Ir) and to a 
discrete molecular manifold [I). The If) manifold is in turn coupled to a conti- 
nuum of level states [rn), assuming that the levels {[/)} do not interfere through 
their interactionwith the medium, so that each II) level is coupled to a different 
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set of {Ira}} states. Making use of the Dyson equation 

G + G O + G O VG (A. 1) 

we obtain the following forms for the matrix elements of the Green's function 

1 1 1 
-- - -  - -  ~r R - -  ~l (Hv)ls Gl` ' (A. 2) G~ E - E~ + E - E~ (Hint)st G,, + E - E~ 

1 
Gr s __ R (Hint)rs Gss, (A. 3) 

E - E r 

1 1 
- -  - -  M 

Gl~ = E - Et (Hv)lsG~ + E - El ~ (Hint)l~Gm~' (A.4) 
m 

1 
_ _  M 

Gins-- E - -  E m El (Hint)mlGls" (A.5) 

Inserting Eq. (A.5) into Eq. (A.4) we get 

1[ 1 ]  
(I4in,)z~(Hi~ | 

F m 

(A.6) 

If interference between different 1 and 1' states is neglected we obtain 

1 [ I(HiMt)trnl 2 ] 
(A.7) 

which after some algebraic manipulations results in 

(/-/~)~s 
Gt~ = E _ ~ + � 8 9  

where the modified energy 

and the width 

(A.8) 

Fl = 2~ ~ I(HM01 z 5(g--  Era) (A.10) 
r a  

are assumed to be weakly dependent on the energy variable E. Inserting now 
Eqs. (A.8) and (A.3) into Eq. (A.2) we obtain after some further algebraic mani- 
pulation 1 

Gs~= E _ E s +  �89 Fs(E)+As(E)) (A.11) 

where 

Ft I(H")sl]2 , (A.11a) A~ 5" 
( E -  E f  + (rlz2) 2 

F~ = 2n ~ I(H~t,u)s,.} 2 5(E - E,) (A.11b) 
r 

M 2 
I(Hi"t)''l (A.9) 

E l = E z + p P ~  E - E ~  
m 
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and where 

Es= ff~ + pp ~ [(HRnt)srl2 2(E-/~t) [(Hv)st2 (A.12) 
, E -  E r + t ~ (E - /~ t )  2 + (El/2) 2 " 

The radiative contributions to the width and level shift of the state s are usually 
nearly constant functions of the energy variable E. Eqs. (3.1) and (3.2) are now 
obtained by replacing the notations Is) and [l) by [si) and [lj) respectively. 

Appendix B. Sum Rules for Non Radiative Decay  

The effect of the broadening of the "final" molecular levels ]lj) on the non 
radiative decay rate may be obtained in the following less concise but simpler 
procedure. As a starting point we take the well known expression [31] for the 
probability distribution in the dissipative manifold. The probability to be at 
time t = 0o in a particular state If> of this manifold is given by 

IVkflz (B.1) 
n s  = (~s - Ek) ~ + ( r k a )  2 

where [k) is the initial metastable state, with the corresponding decay width 
F k and the (shifted) energy Ek" Vk.r denotes the coupling between the states k 
and f .  Summing over all the final states f we obtain (assuming that f is the only 
decay channel) 3 

IKsl~ = 1. (B.2) Zr PS --- ~j. (E S _ Ek)2 + (Vk/2)2 

This trivial sum rule may be applied to derive an expression for F k provided 
that is may be assumed that Fk is weakly dependent on E S. This restriction should 
be recognized as the condition for an exponential decay of the state [k). Assuming 
that this condition is satisfied we may apply Eq. (B.2) to our model taking Ik) 
to be our initial state Isi) and taking the states {[f)} to be the states which result 
from a partial diagonalization of the "finai" molecular levels {I/j)} and the conti- 
nuous manifold of medium levels. Denoting the (continuous) medium levels by 
{[m)} we have 

If> = a~[lj) + ~ bs (B,3) 
m 

where the absolute square of the amplitudes a~ is given by Fano [32] to be 

2 

IVu"Ie~=EY (B.4) 
[a{j[2 = (Ey -- EO) z + (Fu/2) z 

where Fly = 2n0, , [Vty,,,I 2 is the width of the level I/J> and where level shifts have 
been neglected. To derive these results one should invoke the assumption that 
each molecular level I/J) decays into its own set of levels {Ira)}, namely, that the 
levels I/J) do not interfere through their interaction with the medium levels. The 
same assumption has been invoked in deriving Eq. (3.7). 

3 Other independent decay channels will contribute in an additive manner. 
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Assuming further that there is no direct interaction between the initial mole- 
cular state ]si) and the medium levels {Im)} (so that the only interaction occurs 
through the molecular levels [lj)) and utilizing Eq. (B.3) we obtain 4 

Vsi,: = a~(H,,),i,O . (B.5) 

Inserting this result into Eq. (B.2) we now have 

I(H~)<~ taft2 = 1 (B.6) 

where 7 "i now replaces Fk in order to match the notation in Section 3. 
Utilizing Eq. (B.4) and replacing the summation over f by an integration 

over E: with the corresponding density of states, Eq. (B.6) takes the form 

1 V f. dEj I(Hv)s,.,jl 2 r,j = 1. (B.7) 
2~ ~ E(E: - & Y  + ( :%Y]  [(E: - E,j) 2 + (r,~a) ~3 

The integral over E: is easily evaluated assuming that Ftj does not depend on 
this variable leading to 

W, i = F~i 1 ~ I(H,)~i,tjl 2 (Y~'+Gj) 
= ~1, s~ + F "> " (B.8) h -h (E~i - -  El j) 2 q- k~t7 l j) J 

This result corresponds to the physical situation only in the limit F~j ~ 7 "~. 
Neglecting 7 ~ relative to Fzi in the r.h.s, of Eq. (B.8) we regain Eq. (3.7). It should 

be noted that if 7 ~ and F O were comparable in magnitude, the present procedure 
which is based on the condition (3.6) leads to an incorrect result as is seen by 
comparing Eqs. (B.8) and (3.5a). 
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